Conformations of peptides containing a chiral cyclic α, α-disubstituted α-amino acid within the sequence of Aib residues

Yosuke Demizu, ${ }^{\mathrm{a}, \mathrm{b} *}$ Masakazu Tanaka, ${ }^{\text {c* }}$ Mitsunobu Doi, ${ }^{\text {d }}$ Masaaki Kurihara, ${ }^{\text {b }}$ Haruhiro Okuda ${ }^{\text {b }}$ and Hiroshi Suemune ${ }^{\text {a }}$

Abstract

A single chiral cyclic α, α-disubstituted amino acid, (3S,4S)-1-amino-(3,4-dimethoxy)cyclopentanecarboxylic acid [(S,S)-Acs $\left.\mathrm{C}^{\mathrm{dOM}}\right]$, was placed at the \boldsymbol{N}-terminal or \mathbf{C}-terminal positions of achiral α-aminoisobutyric acid (Aib) peptide segments. The IR and ${ }^{1} \mathrm{H}$ NMR spectra indicated that the dominant conformations of two peptides $\mathrm{Cbz}-\left[(\mathrm{S}, \mathrm{S})-\mathrm{Ac}_{5} \mathrm{C}^{\mathrm{dOM}}\right]$-(Aib) $)_{4}-\mathrm{OEt}(1)$ and Cbz -(Aib) $\mathbf{4}^{-}$ $\left[(S, S)-\mathrm{Ac}_{5} \mathrm{c}^{\mathrm{dOM}}\right]$-OMe (2) in solution were helical structures. X-ray crystallographic analysis of 1 and 2 revealed that a left-handed $(M) 3_{10}$-helical structure was present in 1 and that a right-handed $(P) 3_{10}$-helical structure was present in $\mathbf{2}$ in their crystalline states. Copyright © 2010 European Peptide Society and John Wiley \& Sons, Ltd.

Keywords: α-aminoisobutyric acid; chiral cyclic α, α-disubstituted amino acid; conformational analysis; 3_{10}-helix; X-ray diffraction

Introduction

The α-helix is one of the most common protein secondary structures. It usually has a right-handed (P) screw sense because of the asymmetric center of the α-carbon of $\mathrm{L}-\alpha$-amino acids [1]. Several studies have attempted to control the helical screw sense of peptides [2-10], and we have recently reported that a chiral cyclic α, α-disubstituted α-amino acid bearing only side-chain chiral centers, ($3 S, 4 S$)-1-amino-(3,4-dimethoxy)cyclopentanecarboxylic acid $\left[(S, S)-A C_{5} C^{\mathrm{dOM}}\right][11]$ controls the left-handed (M) helical-screw sense of its homopeptides [12]. Incidentally, α-aminoisobutyric acid (Aib) is widely used as a strong helical inducer; however, it does not exhibit a helical-screw sense bias because Aib is an achiral amino acid [13-15]. Toniolo and Benedetti reported the positional effect of a C^{α}-chiral amino acid residue $\left\{C^{\alpha}\right.$-trisubstituted (LVal) or C^{α}-tetrasubstituted [L-($\left.\alpha \mathrm{Me}\right)$ Val: α-methyl-L-valine]\} on the screw sense of a preceding and following achiral $3_{10^{-}}$ helical sequence composed of Aib residues [3,4]. Furthermore, we have reported on the preferred conformations of pentapeptides consisting of one chiral α-ethylated α, α-disubstituted α-amino acid and four Aib residues [16]. Although the effects of single C^{α}-chiral amino-acid residues on Aib sequences have been studied, the influence of the side-chain chiral centers of chiral amino acids has not been reported. Here, we studied whether the attachment of a chiral amino acid bearing only side-chain chiral centers was able to control the helical-screw sense of Aib-based peptides that do not exhibit a screw bias in solution and/or in the solid state. That is to say, we have designed and synthesized two pentapeptides, $\mathrm{Cbz}-\left[(\mathrm{S}, \mathrm{S})-\mathrm{Ac}_{5} \mathrm{C}^{\mathrm{dOM}}\right]-(\mathrm{Aib})_{4}-\mathrm{OEt}$ (1) (Cbz: benzyloxycarbonyl; OEt: ethyl ester) and Cbz-(Aib) 4^{-} $\left[(S, S)-\mathrm{Ac}_{5} \mathrm{C}^{\mathrm{dOM}}\right]$-OMe (2) (OMe: methyl ester), and studied their preferred conformations in solution and in the crystalline state (Figure 1).

Materials and Methods
 Synthesis and Characterization of Peptides

The synthesis of peptides $\mathbf{1}$ and $\mathbf{2}$ was carried out by the stepwise solution-phase method using 1-(3-dimethylaminopropyl)-3ethylcarbodiimide (EDC) hydrochloride and 1-hydroxybenzotriazole hydrate as coupling reagents. All compounds were purified by column chromatography on silica gel.

Cbz-[(S,S)-Ac $\left.5_{5} C^{d O M}\right]-(A i b)_{4}-O E t$ (1). Colorless crystals; mp $181-183{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{24}=+53.16\left(c=1.0, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\right.$ in $\left.\mathrm{CDCl}_{3}\right)$ $3423,3350,2986,2938,1734,1668,1534 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.34-7.47(\mathrm{~m}, 7 \mathrm{H}), 7.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.91$ (br s, 1H), 5.11 (dd, $J=12.2,22.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{dd}$, $J=5.0,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.41-1.52(\mathrm{~m}, 24 \mathrm{H}), 1.22(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$: HR-ESI(+)-MS calcd for $\mathrm{C}_{34} \mathrm{H}_{53} \mathrm{O}_{10} \mathrm{~N}_{5} \mathrm{Na}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, 714.3690: found 714.3812.
 $155-157^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}=+23.7\left(c=1.40, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}\left(\right.$ in $\left.\mathrm{CDCl}_{3}\right)$ 3425, 3351, 2991, 1742, 1707, 1692, 1639, $1548 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR

[^0]

Figure 1. Structures of peptides 1 and 2.
(400 MHz, CDCl ${ }_{3}$) $\delta 7.69$ (br s, 1H), 7.34-7.39 (m, 6H), 7.21 (br s, $1 \mathrm{H}), 6.31$ (br s, 1H), $5.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=12.1,17.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.94(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$, 3.36 (s, 3H), 3.35 (s, 3H), 2.93 (dd, J = 7.8, 14.0 Hz, 1H), 2.64 (dd, $J=7.2,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09$ (dd, $J=8.4,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.02$ (dd, $J=8.1,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.30-1.49(\mathrm{~m}, 24 \mathrm{H})$: HR-ESI(+)-MS calcd. for $\mathrm{C}_{33} \mathrm{H}_{51} \mathrm{O}_{10} \mathrm{~N}_{5} \mathrm{Na}\left(\mathrm{M}^{+}+\mathrm{Na}\right) 700.3533$, found 700.3495; elemental analysis calcd for $\mathrm{C}_{33} \mathrm{H}_{51} \mathrm{O}_{10} \mathrm{~N}_{5}$: C 58.48, H 7.58, N 10.33 : found C 58.42, H 7.58, N 10.35.

FT-IR Spectra

FT-IR spectra were recorded on a JASCO FT/IR-4100 spectrometer at $24^{\circ} \mathrm{C}$ with a resolution of $1.0 \mathrm{~cm}^{-1}$, an average of 32 scans used for the solution $\left(\mathrm{CDCl}_{3}\right)$ method and a 0.1 mm path length used for NaCl cells.

${ }^{1}$ H NMR Spectra

${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian AS 400 spectrometer at $24^{\circ} \mathrm{C}$. Measurements were carried out in CDCl_{3} with tetramethylsilane used as an internal standard. The $\operatorname{TEMPO}(2,2,6,6-$ tetramethylpiperidine- N -oxyl, radical) concentration ranged from 1.0 to $5.0 \times 10^{-2} \%(w / v)$.

CD Spectra

CD spectra were recorded with a Jasco J-720 W spectropolarimeter using a 1.0 mm path length cell. The data were expressed in terms of $[\theta]_{M}$, the total molar ellipticity (${ }^{\circ} \mathrm{cm}^{2} \mathrm{dmol}^{-1}$). 2,2,2trifluoroethanol was used as a solvent.

X-ray Diffraction

Single crystals of 1 and 2 were grown from $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ for 1 and $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ for 2. Data collection was performed on a Bruker AXS SMART 1000 CCD imaging plate diffractometer using graphite-monochromated MoK α radiation. The crystal and collection parameters are listed in Table 1. All crystals remained stable during the X-ray-data collection. The structures of the crystals were solved using the SIR 92 [17] or the SHELXS 97 [18] direct method and expanded by the Fourier technique [19]. All non-H-atoms were given anisotropic thermal parameters, some H -atoms were refined isotropically, and the remaining H -atoms at the calculated positions were given isotropic thermal parameters. The final cycle of full-matrix leastsquares refinement of 1 gave an R_{1} factor of 0.0462 based on $1652(I>2 \sigma(I))$ reflections and an Rw factor of 0.0506

	1	2
Empirical formula	$\mathrm{C}_{34} \mathrm{H}_{53} \mathrm{O}_{10} \mathrm{~N}_{5}$	$\mathrm{C}_{33} \mathrm{H}_{51} \mathrm{O}_{10} \mathrm{~N}_{5}$
M_{r}	691.82	677.79
Crystal dimensions (mm)	$0.20 \times 0.15 \times 0.15$	$0.30 \times 0.30 \times 0.20$
Crystal system	Monoclinic	Orthorhombic
	Lattice parameters	
$a, b, c(\AA)$	10.425, 15.681, 11.718	11.614, 17.354, 17.932
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90, 99.077, 90	90, 90, 90
$V\left[\AA^{3}\right]$	1891.5	3614.3
Space group	$P 2_{1}$	$P 2_{1} 2_{1} 2_{1}$
Z value	2	4
$D_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.215	1.246
$\mu(\operatorname{MoK} \alpha)\left(\mathrm{cm}^{-1}\right)$	0.89	0.92
No. of observations	$1652(I>2 \sigma(l))$	$4127(I>2 \sigma(l))$
No. of variables	444	435
R_{1}, R_{w}	0.0462, 0.0506	0.0374, 0.0542
Solvent	$\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	$\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$

for all data. The R_{1} factor of 2 was 0.0374 based on 4587 ($/>2 \sigma(I)$) reflections and an R_{w} factor of 0.0542 for all data. All data for peptides $\mathbf{1}$ and $\mathbf{2}$ have been deposited in the Cambridge Crystallographic Data Centre (CCDC) as a supplementary publication, and their CCDC reference numbers are CCDC-763135 and 763137, respectively [20].

Results and Discussion

FT-IR Spectra

At first, the preferred conformations of peptides $\mathbf{1}$ and $\mathbf{2}$ were studied in solution using the IR spectroscopic method. Figure 2 shows the IR spectra of $\mathbf{1}$ and $\mathbf{2}$ in the $3250-3500 \mathrm{~cm}^{-1}$ region at a peptide concentration of 1.0 mm in CDCl_{3} solution. In the IR spectra, the weak bands in the $3420 \mathrm{~cm}^{-1}$ region were assigned to free (solvated) peptide NH groups, and the strong bands at around $3350 \mathrm{~cm}^{-1}$ were assigned to peptide NH groups with $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ intramolecular hydrogen bonds (Figure 2). The difference in the spectra obtained at peptide concentrations of 1.0 mm and 0.1 mm was not significant (results not shown). These IR spectra are very similar to those of helical peptides in solution [12,21], but

Figure 2. FT-IR spectra (3250-3500 cm^{-1} region) of peptides $\mathbf{1}$ (a) and $\mathbf{2}$ (b) in CDCl_{3} solution. Peptide concentration: 1.0 mM .
different from those of peptides, which form the extended planar C_{5} conformation [22].

${ }^{1}$ H NMR Spectra

To obtain more detailed information on their preferred conformations, the ${ }^{1} \mathrm{H}$ NMR spectra of peptides $\mathbf{1}$ and $\mathbf{2}$ were measured in CDCl_{3} solution. In the ${ }^{1} \mathrm{H}$ NMR spectra of 1 and $\mathbf{2}, \mathrm{N}(1) \mathrm{H}$ proton signals of the urethane type at the N-terminus were unambiguously determined by their high-field positions at $\delta 5.81$ (br s, 1H) in 1 and $\delta 5.15$ (brs, 1H) in 2, but the remaining four peptide NH protons could not be assigned at this stage. Figure 3 shows solvent perturbation experiments involving the addition of the strong H bond acceptor solvent DMSO $[0-10 \%(v / v)]$ or the paramagnetic free radical TEMPO $\left[0-5 \times 10^{-2} \%(w / v)\right]$. Two NH chemical shifts in both $\mathbf{1}$ and $\mathbf{2}$ were sensitive to the addition of the perturbing reagent DMSO. Also, the addition of the TEMPO radical broadened the bandwidth of the two NH signals. These results demonstrate that the two NH protons are solvent-exposed, suggesting that they are not intramolecularly hydrogen bonded. These results are in accord with a 3_{10}-helical structure, in which two NH groups at the N -terminus of the peptide are freely solvated (not intramolecularly hydrogen bonded).

The NOESY ${ }^{1} \mathrm{H}$ NMR spectra of helical peptides show a series of strong sequential $\mathrm{NH}(i \rightarrow i+1)$ dipolar interactions, which is often used to diagnose helical structures. Furthermore, in peptides and proteins based on coded α-amino acids, there are two NOE constraints, $\left[\mathrm{d}_{\alpha_{N}}(i \rightarrow i+2)\right]$ and $\left[\mathrm{d}_{\alpha_{N}}(i \rightarrow i+4)\right]$, which are believed to be characteristic of the 3_{10} - and the α-helical structure, respectively. Unfortunately, these latter interactions do not occur in peptides composed of α, α-disubstituted α-amino acids because their residues lack $\alpha \mathrm{CH}$ protons. Figure 4 shows the 2D NOESY ${ }^{1} \mathrm{H}$ NMR spectra of 1(Fig. 4a) and 2(Fig. 4b) in CDCl_{3} solution. The spectra of both $\mathbf{1}$ (Fig. 4a) and 2(Fig. 4b) showed a complete series of sequential $\mathrm{NH}(i \rightarrow i+1)$ dipolar interactions from the N -terminal $\mathrm{N}(1) \mathrm{H}$ to the C-terminal $\mathrm{N}(5) \mathrm{H}$, which is characteristic of a helical secondary structure.

CD Spectra

The CD spectra of peptides 1 and 2 were measured in 2,2,2trifluoroethanol solution to obtain information about their helicalscrew senses. However, neither the spectra of 1 nor $\mathbf{2}$ showed maximum characteristic of a helical structure (208 and 222 nm) [23], suggesting the existence of roughly equivalent amounts of both right-handed (P) and left-handed (M) helices (data not shown).

Table 2. Selected torsion angles $\left[\omega, \phi, \psi\right.$ and $\left.x\left({ }^{\circ}\right)\right]$ for pentapeptides		
$\mathbf{1}$ and $\mathbf{2}$ as determined by X-ray crystallographic analysis		
Torsion angle	$\mathbf{1}$	$\mathbf{2}$
ω_{0}	179.7	-176.7
ϕ_{1}	57.8	-57.4
ψ_{1}	27.1	-32.4
ω_{1}	176.2	-178.2
ϕ_{2}	59.0	-53.1
ψ_{2}	32.4	-34.3
ω_{2}	175.1	-176.1
ϕ_{3}	56.6	-53.3
ψ_{3}	23.8	-38.6
ω_{3}	-177.3	-174.5
ϕ_{4}	52.1	-62.6
ψ_{4}	35.3	-20.8
ω_{4}	-170.4	-170.7
ϕ_{5}	-49.1	51.9
ψ_{5}	-50.4	35.6
ω_{5}	-175.9	-174.2
χ_{1}	84.6	-
$\chi_{1}{ }^{\prime}$	-104.9	-
χ_{5}	-	92.2
$\chi_{5}{ }^{\prime}$	-	-117.7

X-ray Diffraction

X-ray crystallographic analysis unambiguously revealed the molecular structural conformations of the peptides in the crystal state. The pentapeptides $\mathbf{1}$ and $\mathbf{2}$ were turned into suitable crystals for X-ray crystallographic analysis by slow evaporation of the solvent ($\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$) at room temperature. The crystal and diffraction parameters of $\mathbf{1}$ and $\mathbf{2}$ are summarized in Table 1, and their molecular structures are given in Figures 5 and 6 . Relevant backbone and side-chain torsion angles and the intra- and intermolecular hydrogen-bond parameters are listed in Tables 2 and 3, respectively.

In the asymmetric unit of pentapeptide 1, only one conformer of the peptide molecule existed, and it is folded into a left-handed $(M) 3_{10}$-helix. The mean values of the ϕ and ψ torsion angles of the amino-acid residues ($1-4$) were $+56.4^{\circ}$ and $+29.7^{\circ}$, respectively, which are close to those for an ideal left-handed $(M) 3_{10}$-helical structure ($+60^{\circ}$ and $+30^{\circ}$) [24]. Reversal of the torsion angle signs at the C-terminus occurred; i.e. the signs of the ϕ and ψ torsion angles (-49.1° and -50.4°) of the Aib^{5} residue were negative.

Figure 3. ${ }^{1} \mathrm{H}$ NMR experiments involving the addition of DMSO and the radical TEMPO to the CDCl_{3} solutions of peptides $\mathbf{1}$ and $\mathbf{2}$. Plots of NH chemical shifts in the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1}(\mathrm{a})$ and $\mathbf{2}(\mathrm{b})$ as a function of increasing concentrations of $\mathrm{DMSO}(v / v)$ being added to the CDCl_{3} solution. Plots of the bandwidths of the NH protons in the ${ }^{1} \mathrm{H}$ NMR spectra of 1 (c) and 2 (d) as a function of increasing concentrations of TEMPO (w / v) being added to the CDCl_{3} solution. Peptide concentration: 1.0 mM .

Table 3. Intra- and intermolecular H -bond parameters for pentapeptides $\mathbf{1}$ and $\mathbf{2}$

Peptide ${ }^{\text {a }}$	Donor D-H	Acceptor A	$\begin{gathered} \text { Distance }(\AA) \text {) } \\ \text { D } \cdots \mathrm{A} \end{gathered}$	$\begin{gathered} \text { Angle (}{ }^{\circ} \text {) } \\ \text { D—H } \cdots A \end{gathered}$	Symmetry operations
$\mathrm{Cbz}-\left[(S, S)-\mathrm{Ac}_{5} \mathrm{C}^{\text {dOM }}\right]-(\mathrm{Aib})_{4}-\mathrm{OEt}(\mathbf{1})$	$\mathrm{N}_{3}-\mathrm{H}$	O_{0}	3.15	164.2	x, y, z
	$\mathrm{N}_{4}-\mathrm{H}$	O_{1}	3.00	161.8	x, y, z
	$\mathrm{N}_{5}-\mathrm{H}$	O_{2}	3.02	145.8	x, y, z
	$\mathrm{N}_{1}-\mathrm{H}$	$\mathrm{O}_{4}{ }^{\prime}$	2.83	160.6	$x, y, z+1$
	$\mathrm{N}_{2}-\mathrm{H}$	$\mathrm{O}_{5}{ }^{\prime}$	3.15	115.7	$x, y, z+1$
$\mathrm{Cbz}-(\mathrm{Aib})_{4}-\left[(\mathrm{S}, \mathrm{S})-\mathrm{Ac}_{5} \mathrm{C}^{\text {dOM }}\right]-\mathrm{OMe}(\mathbf{2})$	$\mathrm{N}_{3}-\mathrm{H}$	O_{0}	3.01	152.0	x, y, z
	$\mathrm{N}_{4}-\mathrm{H}$	O_{1}	3.04	145.6	x, y, z
	$\mathrm{N}_{5}-\mathrm{H}$	O_{2}	3.00	161.5	x, y, z
	$\mathrm{N}_{1}-\mathrm{H}$	$\mathrm{O}_{4}{ }^{\prime}$	2.86	164.1	$x-1, y, z$
	$\mathrm{N}_{2}-\mathrm{H}^{\text {b }}$	-	-	-	-

[^1]

(b) $\underbrace{C_{\text {N }}-N_{1} N_{1}}_{d_{N 1 N 2}}$

Figure 4. The NOESY ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectra of peptides 1 (a) and $\mathbf{2}$ (b). Peptide concentration: 5.0 mM ; mixing time: 200 ms ; sample temperature; $24{ }^{\circ} \mathrm{C}$.

Figure 5. X-ray diffraction structure of 1 as viewed (a) perpendicular to and (b) along the helical axis.

Figure 5 shows the X -ray structures of the $(M) 3_{10}$-helical triangle (Fig. 5a) perpendicular to and (Fig. 5b) along the helical axis.

Three intramolecular hydrogen bonds, each of which form a ten-membered (atoms) pseudo ring of the $i \leftarrow i+3$ type, exist in the 3_{10}-helical molecule of $\mathbf{1}$. The three intramolecular hydrogen bonds are present between the $\mathrm{H}-\mathrm{N}(3)$ and $\mathrm{C}(0)=\mathrm{O}(0) \mathrm{O}$ atom of the Cbz group with an $\mathrm{N}(3) \cdots \mathrm{O}(0)$ distance of $3.15 \AA$, between the $\mathrm{H}-\mathrm{N}(4)$ and $\mathrm{C}(1)=\mathrm{O}(1)[\mathrm{N}(4) \cdots \mathrm{O}(1)=3.00 \AA$, and between the $\mathrm{H}-\mathrm{N}(5)$ and $\mathrm{C}(2)=\mathrm{O}(2)[\mathrm{N}(5) \cdots \mathrm{O}(2)=3.04 \AA$ A. In the packing mode, two intermolecular hydrogen bonds were observed between the 3_{10}-helical conformers; i.e. between the $\mathrm{H}-\mathrm{N}(1)$ urethane donor and the $\mathrm{C}\left(4^{\prime}\right)=\mathrm{O}\left(4^{\prime}\right) \mathrm{O}$ atom of a symmetry-related molecule (x, $y, z+1)\left[\mathrm{N}(1) \cdots \mathrm{O}\left(4^{\prime}\right)=2.83 \AA\right.$] and between the $\mathrm{H}-\mathrm{N}(2)$ peptide donor and the $\mathrm{C}\left(5^{\prime}\right)=\mathrm{O}\left(5^{\prime}\right) \mathrm{O}$ atom of a symmetry-related molecule $(x, y, z+1)\left[N(2) \cdots O\left(5^{\prime}\right)=3.15 \AA\right]$.

The pentapeptide $\mathbf{2}$ exclusively crystallized into a right-handed (P) 3_{10}-helical conformer (Figure 6). The helical screw handedness (P) of $\mathbf{2}$ was opposite to that of $\mathbf{1}(M)$. The mean values of the ϕ and ψ torsion angles of the amino-acid residues ($1-4$) were -56.6° and
-31.5°, and reversal of the torsion angle signs at the C-terminus occurred at the $\mathrm{Ac}_{5} \mathrm{C}^{\mathrm{dOM}}$ residue ($\phi=+51.9^{\circ}, \psi=+35.6^{\circ}$).
Three consecutive intramolecular hydrogen bonds of the $i \leftarrow i+3$ type, between the $\mathrm{H}-\mathrm{N}(3)$ and $\mathrm{C}(0)=\mathrm{O}(0)[\mathrm{N}(3) \cdots \mathrm{O}(0)$ $=3.01 \AA$], the $\mathrm{H}-\mathrm{N}(4)$ and $\mathrm{C}(1)=\mathrm{O}(1)[\mathrm{N}(4) \cdots \mathrm{O}(1)=3.04 \AA$], and the $\mathrm{H}-\mathrm{N}(5)$ and $\mathrm{C}(2)=\mathrm{O}(2)[\mathrm{N}(5) \cdots \mathrm{O}(2)=3.00 \AA$] were observed. In the packing mode, one intermolecular hydrogen bond was observed between the $\mathrm{H}-\mathrm{N}(1)$ donor and the $\mathrm{C}\left(4^{\prime}\right)=\mathrm{O}\left(4^{\prime}\right)$ acceptor $\left[\mathrm{N}(1) \cdots \mathrm{O}\left(4^{\prime}\right)=2.86 \AA\right.$] of a symmetry-related molecule $(x, y, z-1)$.

Conclusions

A single chiral cyclic α, α-disubstituted amino acid, $(S, S)-\mathrm{Ac}_{5} \mathrm{C}^{\mathrm{dOM}}$, was attached to the N-terminal or C -terminal positions of achiral Aib-based peptide segments. The dominant conformations of peptides $\mathbf{1}$ and $\mathbf{2}$ in solution were both found to be 3_{10}-helical structures by IR, ${ }^{1} \mathrm{H}$ NMR, and 2D NOESY spectra. Furthermore, the CD spectra of $\mathbf{1}$ and $\mathbf{2}$ suggested the existence of roughly equivalent amounts of both right-handed (P) and left-handed (M) helices. The conformations of $\mathbf{1}$ and $\mathbf{2}$ in the crystalline state

Figure 6. X-ray diffraction structure of $\mathbf{2}$ as viewed (a) perpendicular to and (b) along the helical axis.
were analyzed by X-ray diffraction. A left-handed $(M) 3_{10}$-helical structure was present in $\mathbf{1}$, whereas a right-handed $(P) 3_{10}$-helical structure was present in $\mathbf{2}$ in their crystalline states. The attachment of $(S, S)-\mathrm{Ac}_{5} \mathrm{C}^{\mathrm{dOM}}$ to the N -terminal position of an achiral Aib-based peptide segment induced a left-handed helical screw sense, as $(S, S)-\mathrm{Ac}_{5} \mathrm{C}^{\mathrm{dOM}}$ homopeptides did [12], whereas its attachment at the C-terminal position gave a right-handed helical structure. Considering these results, both right-handed and left-handed helices are present in the equilibrium mixtures of these peptides in solution, and a slightly energetically favorable conformer is preferentially packed in the crystalline state. We conclude that the preference for a given helical handedness governed by side-chain chiral centers, which affects achiral Aib-based peptide segments is lower than that of L-amino acids with an α-chiral center [4].

Acknowledgements

This work was supported in part by a Grant-in-Aid for Young Scientists (B) (21790018); a Grant-in-Aid for Scientific Research on Priority Areas (No. 20037054, 'Chemistry of Concerto Catalysis') from the Ministry of Education, Science, Sports, and Culture of Japan; and a Grant-in-Aid from the ASAHI GLASS Foundation.

References

1 Branden C, Tooze J. Introduction to Protein Structure. Garland: New York, 1991; 1-131.
2 Royo S, Borggraeve WMD, Peggion C, Formaggio F, Crisma M, Jiménez AI, Cativiela C, Toniolo C. Turn and helical peptide handedness governed exclusively by side-chain chiral centers. J.Am. Chem. Soc. 2005; 127: 2036-2037.
3 Pengo B, Formaggio F, Crisma M, Toniolo C, Bonora GM, Broxterman QB, Kamphuis J, Saviano M, Iacovino R, Rossi F, BenedettiE. Linear oligopeptides. Part 406. ${ }^{1}$ Helical screw sense of peptide molecules: The pentapeptide system $(\mathrm{Aib})_{4} / \mathrm{L}-$ Val[L-(α Me)Val] in solution. J. Chem. Soc. Perkin Trans. 2 1998; 1651-1657.
4 Benedetti E, Saviano M, lacovino R, Pedone C, Santini A, Crisma M, Formaggio F, Toniolo C, Broxterman QB, Kamphuis J. Helical screw sense of peptide molecules: the pentapeptide system (Aib) $4 / \mathrm{L}-$ Val[L-($\alpha \mathrm{Me}) \mathrm{Val}]$ in the crystal state. Biopolymers 1998; 46: 433-443.
5 Inai Y, Ishida Y, Tagawa K, Takasu A, Hirabayashi T. Noncovalent domino effect on helical screw sense of chiral peptides possessing C-terminal chiral residue. J. Am. Chem. Soc. 2002; 124: 2466-2473.
6 Ousaka N, Inai Y, Kuroda R. Chain-terminus triggered chiral memory in an optically inactive 3_{10}-helical peptide. J. Am. Chem. Soc. 2008; 130: 12266-12267.
7 Demizu Y, Yamagata N, Sato Y, Doi M, Tanaka M, Okuda H, Kurihara M. Controlling the helical screw sense of peptides with C-terminal L-valine. J. Pept. Sci. 2010; 16: 153-158.

8 Oba M, Demizu Y, Yamagata N, Sato Y, Doi M, Tanaka M, Suemune H, Okuda H, Kurihara M. Solid-state conformation of diastereomeric -Pro-Pro- sequences. Tetrahedron 2010; 66: 2293-2296.
9 Nagano M, Tanaka M, Doi M, Demizu Y, Kurihara M, Suemune H. Helical-screw directions of diastereoisomeric cyclic α-amino acid oligomers. Org. Lett. 2009; 11: 1135-1137.
10 Tanaka M, Anan K, Demizu Y, Kurihara M, Doi M, Suemune H. Sidechain chiral centers of amino acid and helical-screw handedness of its peptides. J. Am. Chem. Soc. 2005; 127: 11570-11571.
11 Bardi R, Pizzesi AM, Toniolo C, Sukumar M, Balaram P. Stereochemistry of peptides containing 1-aminocyclopentanecarboxylic acid (Acc ${ }^{5}$): solution and solid-state conformations of Boc-Acc ${ }^{5}-\mathrm{Acc}^{5}$ NHMe. Biopolymers 1986; 25: 1635-1644.
12 Tanaka M, Demizu Y, Doi M, Kurihara M, Suemune H. Chiral centers in the side chains of α-amino acids control the helical screw sense of peptides. Angew. Chem. Int. Ed. 2004; 43: 5360-5363.
13 Karle IL, Balaram P. α-Helical peptide molecules containing Aib residues. Biochemistry 1990; 29: 6747-6756.
14 Heimgartner H. Synthons for α, α-disubstituted α-amino acids in heterocycle and peptide synthesis. Angew. Chem. Int. Ed. 1991; 30: 238-264.
15 Toniolo C, Crisma M, Formaggio F, Peggion C, Broxterman Q, Kaptein B. Peptide β-bend and 3_{10}-helix: from 3D-structural studies to applications as templates. J. Incl. Phenom. Macrocycl. Chem. 2005; 51: 121-136.
16 Oba M, Tanaka M, Kurihara M, Suemune H. Conformation of peptides containing (S)- α-ethylleucine. Helv. Chim. Acta 2002; 85: 3197-3218.
17 Altomare A, Cascarano G, Giacovazzo C, Guagliardi A, Burla M, Polidori G, Camalli M. Sir 92. J. Appl. Crystallogr. 1994; 27: 435.
18 Sheldrick GM. SHELXL 97. Program for Crystal Structure Refinement. University of Göttingen: Göttingen, 1997.
19 Beurskens PT, Admiraal G, Beurskens G, Bosman WP, de Gelder R, Israel R, Smits JMM. The DIRDIF-99 program system, Technical Report of the Crystallography Laboratory. University of Nijmegen: The Netherlands, 1994.
20 CCDC-763135 and -763137 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033, or deposit@ccdc.cam.ac.uk).
21 Kennedy DF, Crisma M, Toniolo C, Chapman D. Studies of peptides forming 3_{10} - and α-helixes and β-bend ribbon structures in organic solution and in model biomembranes by Fourier transform infrared spectroscopy. Biochemistry 1991; 30: 6541-6548.
22 Tanaka M, Nishimura S, Oba M, Demizu Y, Kurihara M, Suemune H. An extended planar C_{5} conformation and a 3_{10}-helical structure of peptide foldamer composed of diverse α-ethylated α, α disubstituted α-amino acids. Chem. Eur. J. 2003; 9: 3082-3090.
23 Toniolo C, Polese A, Formaggio F, Crisma M, Kamphuis J. CD spectrum of a peptide 310 -helix. J. Am. Chem. Soc. 1996; 118: 2744-2745.
24 Pal L, Basu G, Chakrabarti P. Variants of 3_{10}-helices in proteins. Proteins: Structure Funct. Genet. 2002; 48: 571-579.

[^0]: * Correspondence to: Yosuke Demizu, Division of Organic Chemistry, National Institute of Health Sciences, Tokyo 158-8501, Japan. E-mail: demizu@nihs.go.jp

 Masakazu Tanaka, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan.E-mail:matanaka@nagasaki-u.ac.jp
 a Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
 b Division of Organic Chemistry, National Institute of Health Sciences, Tokyo 158-8501, Japan
 c Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 8528521, Japan
 d Osaka University of Pharmaceutical Sciences, Osaka 569-1094, Japan

[^1]: ${ }^{a}$ The amino-acid numbering begins at the N-terminus of the peptide chain.
 ${ }^{\mathrm{b}}$ No intermolecular hydrogen bond was observed at $\mathrm{N}_{2}-\mathrm{H}$ in the packing mode.

